Mobility of Min-proteins in Escherichia coli measured by fluorescence correlation spectroscopy.

نویسندگان

  • G Meacci
  • J Ries
  • E Fischer-Friedrich
  • N Kahya
  • P Schwille
  • K Kruse
چکیده

In the bacterium Escherichia coli, selection of the division site involves pole-to-pole oscillations of the proteins MinD and MinE. Different oscillation mechanisms based on cooperative effects between Min-proteins and on the exchange of Min-proteins between the cytoplasm and the cytoplasmic membrane have been proposed. The parameters characterizing the dynamics of the Min-proteins in vivo are not known. It has therefore been difficult to compare the models quantitatively with experiments. Here, we present in vivo measurements of the mobility of MinD and MinE using fluorescence correlation spectroscopy. Two distinct timescales are clearly visible in the correlation curves. While the faster timescale can be attributed to cytoplasmic diffusion, the slower timescale could result from diffusion of membrane-bound proteins or from protein exchange between the cytoplasm and the membrane. We determine the diffusion constant of cytoplasmic MinD to be approximately 16 microm(2) s(-1), while for MinE we find about 10 microm(2) s(-1), independently of the processes responsible for the slower time-scale. The implications of the measured values for the oscillation mechanism are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biologistics—Diffusion coefficients for complete proteome of Escherichia coli

MOTIVATION Biologistics provides data for quantitative analysis of transport (diffusion) processes and their spatio-temporal correlations in cells. Mobility of proteins is one of the few parameters necessary to describe reaction rates for gene regulation. Although understanding of diffusion-limited biochemical reactions in vivo requires mobility data for the largest possible number of proteins ...

متن کامل

Enterotoxigenic Escherichia coli infection induces tight junction proteins expression in mice

Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in travelers, young children and piglets, but the precise pathogenesis of ETEC induced diarrhea is not fully known. Recent investigations have shown that tight junction (TJ) proteins and aquaporin 3 (AQP 3) are contributing factors in bacterial diarrhea. In this study, using immunoblotting and immunohistochemistry analyses, we found that E...

متن کامل

Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii

Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...

متن کامل

Fluorescence Correlation Spectroscopy Measurements of the Membrane Protein TetA in Escherichia coli Suggest Rapid Diffusion at Short Length Scales

Structural inhomogeneities in biomembranes can lead to complex diffusive behavior of membrane proteins that depend on the length or time scales that are probed. This effect is well studied in eukaryotic cells, but has been explored only recently in bacteria. Here we used fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) to study diffusion of the m...

متن کامل

Expression of Recombinant Protein B Subunit Pili from Vibrio Cholera

Background & Aims: Vibrio cholerae is a gram-negative bacterial pathogen that causes cholera disease. Following ingestion by a host and entry into the upper intestine, V. cholera colonizes and begins to emit enterotoxin. One of the most pathogenic factors of Vibrio cholera is toxin-coregulated pili (TCP). ToxinCoregulated pili is as the primary factor requiered for the colonization and insisten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical biology

دوره 3 4  شماره 

صفحات  -

تاریخ انتشار 2006